

EXTERNAL REFERENCES ID SCREEN® PPR COMPETITION

Last update: July 2024

Publications / References:

PERFORMANCE EVALUATION

1)Tully M. et al. (2023). The evaluation of five serological assays in determining seroconver²sion to peste des petits ruminants virus in typical and atypical hosts. Scientific Reports, 13(1), 14787.	 793 sera from a range of species (sheep, goat, dromedary, african buffalo, cattle, wildebeest, waterbuck, topi, impala, hartebeest, lesser kudu, gerenuk, gazelles, warhog, saiga, yak, alpaca, llama, and pig) were tested using the ID Screen® PPR COMPETITION, VNT, and the AU-PANVAC-H-ELISA. Results: for typical livestock, the percentage agreement for all results between the 3 assays was>91.2%; for the sera from atypical hosts, the percentage agreement for all results between the 3 assays was>80.8%. The ID VET ELISA was consistently the most sensitive of the three assays, generating the highest number of positive results across wildlife species. In some instances, such as with the Grant's, Gazelle Thomson's, impala and llama, only the ID VET ELISA produced positive results. (sic) 	Correlation with other techniques	Test of particular species		
2)Bataille A. et al. (2019). Optimization and evaluation of a non-invasive tool for PPR surveillance and control. Scientific Reports 9: 4742.	 optimization of PPR diagnostic tools adapted to fecal samples; the ID Screen® PPR COMPETITION was used to confirm seronegative status of captive artiodactyls before testing fecal samples. Results: PPRC specificity data from captive artiodactyls (30 samples from 7 species: Addax, Barbary sheep, Dama gazelle, Bharal, Bongo, Beisa Oryx, Nyala): 100%. 		Test of particular species		specificity data

3)Torsson E. et al. (2018). Filter paper is a simple and cost-effective transport medium for serological diagnosis of Peste des petits ruminants. Small ruminant research, 170, 154-159.

- evaluation and validation of the use of filter paper in serological diagnosis of PPR. Blood samples (serum and filter paper) were collected from sheep and goats and analysed using the ID Screen® PPR COMPETITION.
- Results: filter papers are an acceptable and cost-effective transport method of whole blood samples for later use of the ID Screen® PPR Competition (with an adjusted cutoff).

PPRC can be used with samples of whole blood deposited on filter paper.

Particular matrix

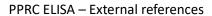
SMALL RUMINANTS

VACCINATION MONITORING AND EXPERIMENTAL STUDIES

4)Algezoli O. et al. (2024). Sero- prevalence of peste des petits ruminants virus-specific antibodies in Sudanese sheep and goats before and after vaccination. researchsquare.com.	 sera from 653 sheep and 172 goats before and after vaccination with a locally produced Nigeria 75/1 vaccine were tested using the ID SCREEN® PPR COMPETITION. Results: before vaccination, the prevalence was 54.6% in the whole test group (n = 855), 53.9% in sheep (n = 683), and 57.6% in goats (n = 172); One month after vaccination 88.4% (343/388) of seronegative animals seroconverted suggesting the efficacy of the locally produced Nigeria 75/1 vaccine. 		Vaccination monitoring
5)Byadovskaya O. et al. (2024). Completely Protects Goats from a Virulent Lineage IV Field Strain of Peste Des Petits Ruminants Virus. Vaccines 12(2), 110.	 the potency and safety of the ARRIAH live attenuated PPRV vaccine (lineage II) were assessed in goats by challenging them with a virulent lineage IV Mongolia/2021 isolate. For comparison, two commercial vaccines of Nigeria75/1 strain were used. The animals were divided into four groups: one control group for the challenge and three experimental groups (V1, V2, and V3 groups) for vaccine administration, Serum samples were evaluated at 0, 7, 14, and 21 dpv (days post-vaccination) using the ID SCREEN® PPR COMPETITION. Results: on the day of vaccination (day 0), all animals were seronegative. A week after vaccination, the animals of all three groups had equivalent levels of detectable specific antibodies, which increased 2 weeks 		Experimental study

	PPRC ELISA – Exter	IIai	reie	rend	æs	
	after vaccination and then persisted for the rest of the study period. On the day of infection (3 weeks after vaccination), the level of antibodies in the range of 21.4–22.6% of inhibition was observed in all experimental group animals (V1–V3).					
6)Amanova Z. et al. (2023). Assessment of Peste des Petits Ruminants Antibodies in Vaccinated Pregnant Ewes of Kazakh Breed Fine-Fleeced and Determination of the Decreasing Trend of Maternal Immunity in Their Lambs. Viruses 15, 2054.	 study of peste des petits ruminants (PPR) antibodies in vaccinated pregnant ewes immunized with a vaccine from the Nigeria 75/1 strain of the PPR virus and the duration of maternal immunity in their lambs. Blood samples of vaccinated and control ewes taken on days 0, 7, 14 and 21 were tested for the presence of antibodies in blood sera. Blood samples were taken from newborn lambs at the age of 1 week with an interval of 7 days for 18 weeks. Serum samples were tested for PPR antibodies using the ID SCREEN® PPR COMPETITION and virus neutralization test (VNT). Results: maternal antibodies (MAs) in lambs born from vaccinated ewes were detected using the ID SCREEN® PPR COMPETITION for up to 18 weeks, with a tendency to decrease starting at week 14, and by the end of the experiment receded below the protective level. In the blood serum of two 14-week-old lambs with MAs post vaccination with a field dose of the vaccine against PPR, the titers of protective antibodies against PPRV increased to on day 14 post infection, and were 100% protected from infection with the field PPRV. 	Correlation with other techniques			Experimental study	
7)Crofts F. et al. (2023). Evaluation of a novel liquid stabilised peste des petits ruminants vaccine: Safety and immunogenic efficacy in sheep and goats in the field in Jordan. Vaccine: X, 15, 100363.	 a novel liquid stabilizer was tested with the Nigeria 75/1 Peste des Petit Ruminants (PPR) vaccine over two field studies carried out in sheep and goats. Sera were taken immediately before vaccination and at approximately 1.5, 3, and 6 months following vaccination, then tested using the ID SCREEN® PPR COMPETITION and virus neutralization test (VNT). Results: It was observed that the liquid-stabilized vaccine was able to provide comparable antibody responses in both species to those induced by the lyophilized vaccine. Using the ID SCREEN® PPR COMPETITION, at the first sampling 45/46dpv, the majority of animals in both experimental groups were positive for PPRV antibodies. As the study progressed to 92dpv and 181/182dpv the degree of participating animals positive for PPRV antibodies remained consistent. 	Correlation with other techniques			Experimental study	

8)Milovanovic M. et al. (2022). The Experimental Infection of Goats with Small Ruminant Morbillivirus Originated from Barbary Sheep. Pathogens, 11, 991.	 in this study, a small ruminant morbillivirus (SRMV) isolate from an outbreak was analyzed in an experimental infection; the dynamic of the infection was followed by virological methods (RT-qPCR and ID RAPID PPR Antigen dipstick field test) and serological methods (using the ID SCREEN® PPR COMPETITION). Results: seroconversion was observed in infected goats from 7 dpi and in in-contact goats from 14 dpi. 	Correlation with other techniques		Experimental study
9)Amanova Z. et al. (2021). Duration of Protective Immunity in Sheep Vaccinated with a Combined Vaccine against Peste des Petits Ruminants and Sheep Pox. Vaccines 9, 912.	 in this study, the ability of a combined vaccine against peste des petits ruminants ((Nigeria strain 75/1) and sheep pox was demonstrated. The duration of the protective immunity of immunized sheep from PPR was evaluated using a serum neutralization test (SNT), followed by testing of the resistance of vaccinated sheep to infection with the field strain Kentau-7 of the PPRV. The PPR antibody response was additionally measured using the ID SCREEN® PPR COMPETITION. Results: in sheep immunized with the combined vaccine, antibodies of PPRV persisted for up to 12 months, with slight fluctuations; the combined vaccine induced 100% clinical protection against the field strain of PPRV. 			Experimental study
10)Enchery F. et al. (2019). Development of a PPRV challenge model in goats and its use to assess the efficacy of a PPR vaccine. Vaccine, 37(12), 1667-1673.	 after developing a challenge model, the efficacy of a vaccine (PPR-VAC, live vaccine based on Nigeria 75/1) against the MA08 strain was assessed in goats. Blood was collected from all goats on D-3, D1, D4, D8, D11, and D14 during the virulence experiment, and on D0, D9, D21, and D35 during the vaccine experiment. Sera were tested using the ID SCREEN® PPR COMPETITION. Results: all the goats were seronegative at the beginning of the study. All the goats in the vaccinated group were seropositive 9 days post-vaccination. Goats in the control group remained seronegative until the challenge. At the end of the study, all the goats were seropositive. 			Experimental study
11)Irshad H. et al. (2019). Efficacy of three different Peste des petits ruminants (PPR) vaccines and determination of appropriate age of PPR vaccination in lambs. Pak Vet J, 39(4): 606-608.	 Evaluation of the efficacy of three different PPR vaccines on lambs, by serum analysis using the ID SCREEN® PPR COMPETITION. Results: The percentage of inhibition values of lambs with maternal antibodies against PPRV vaccinated became negative after one or two months of vaccination and remained negative till the end of the experiment. 			Experimental study

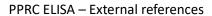


12)Fakri F. et al. (2017). Susceptibility of Moroccan sheep and goat breeds to peste des petits ruminants Virus. Acta Vet Scand 59:56.	 experimental infections to evaluate the susceptibility of sheep and goat breeds to PPRV. The serological response was evaluated using virus neutralization (VT) and the ID SCREEN® PPR COMPETITION. Results: antibody responses were observed in animals of all groups from day 14 post-infection to day 27. Sheep developed higher titers than goats. 			Experimental study
13)Dik B. et al. (2016). Corynebacterium cutis Lysate Treatment can Increase the Efficacies of PPR Vaccine. Journal of interferon & cytokine research, Volume 00, Number 00.	 experimental study in sheep using Pesdoll-S vaccine (strain 75/1); blood samples were collected before the treatment and at different points after treatment (1, 3, 7, 14, 21, and 28 days); serum samples were evaluated using the ID SCREEN® PPR COMPETITION. Results: antibody response was observed from day è post-vaccination to day 28. 			Experimental study
14)Holzer B. et al. (2016). Protection of cattle against rinderpest by vaccination with wild type but not attenuated strains of Peste des Petits Ruminants virus. J. Virol. doi: 10.1128/JVI.00040-16.	 the ID SCREEN® PPR COMPETITION, the PPRV-H cELISA (Pirbright Institute) and VNT were used to validate efficacy of vaccination with wild type but not attenuated strain of PPRV and two PPRV vaccine strains (Nigeria/75/1 and Sungri/96) in goats. Results: a strong response from 14 dpi was obtained with the 3 tests. 	Correlation with other techniques		Experimental study
15)Kabir M. E. et al. (2016). Serosurveillance and sero-monitoring of locally produced PPR vaccine in the field and experimental level. Asian Journal of Medical and Biological Research, 2(1), 33-37.	 the ID SCREEN® PPR COMPETITION was used in seromonitoring in 240 non-vaccinated/80 vaccinated goats and an experimental trial using a PPR live attenuated vaccine. Results: seroprevalence was 20.31% in non-vaccinated goats, 75% in vaccinated goats; in the experimental trial, 100% vaccinated goats were seropositive after 21, 180 and 365 days post-vaccination. 		Epidemiological study	Experimental infection
16)Rojas J.M. et al. (2014). Vaccination with Recombinant Adenoviruses Expressing the Pest des Petits Ruminants Virus F or H Proteins Overcomes Viral Immunosuppression and Induces Protective Immunity against PPRV Challenge in Sheep. Plos One,Vol. 9, Issue 7, e101226.	 vaccination and challenge experiments with recombinant adenoviruses expressing PPR proteins. Serological response was evaluated with the ID SCREEN® PPR COMPETITION. Results: no antibodies were detected in vaccinated animals or control groups before the challenge. After the challenge on vaccinated and control sheep, PPRC detects seroconversion between 5 and 7 days post-challenge. 			Experimental study

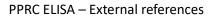
EPIDEMIOLOGICAL STUDIES

17)Ejigu E. et al. (2023). Sero-Prevalence and Associated Risk Factors of Peste Des Petits Ruminants in Dera and Gerar Jarso Districts of Oromia Region, Ethiopia. Veterinary Medicine: Research and Reports, 111-123.	 sera from 319 sheep and 343 goats were tested using the ID SCREEN® PPR COMPETITION. Results: overall individual animal and flock level seroprevalence was 10.3% and 100, respectively. 		Epidemiological study	
18)Larska M. <i>et al.</i> (2023). Occurrence of emerging ruminant viruses in goats in Poland . Polish Journal of Veterinary Sciences, 26(1), 137-142.	 365 goat sera from a free-PPR-area were tested using the ID SCREEN® PPR COMPETITION. Results: No antibodies were found in any of the tested animals. The ID SCREEN® PPR COMPETITION has a specificity of 100% (CI 95%: 99-100). 		Epidemiological study	Specificity data
19)Nkamwesiga J. et al. (2023). Seroprevalence and risk factors of Peste des petits ruminants in different production systems in Uganda. Preventive veterinary medicine, 221, 106051.	 2520 goat and sheep sera were tested using the ID SCREEN® PPR COMPETITION. Results: overall true seroprevalence was 27.3%. 		Epidemiological study	
20)Şevik M. (2023). Survey of antibodies to Peste des petits ruminants virus in small ruminants in the Mediterranean Region of Turkey. Journal of the Hellenic Veterinary Medical Society, 74(4), 6393-6398.	 sera from 77 sheep and 61 goats were tested using the ID SCREEN® PPR COMPETITION. Results: Out of 138 sera samples analyzed, 18 sera samples (13%) were seropositive, of which 18.2% were from sheep, whereas 6.6% were from goats. 		Epidemiological study	
21)Akwongo C. et al. (2022). Prevalence, Risk Factors for Exposure, and Socio- Economic Impact of Peste Des Petits Ruminants in Karenga District, Karamoja Region, Uganda. Pathogens, 11, 54.	 sera from 115 sheep and 569 goats were tested using the ID SCREEN® PPR COMPETITION. Results: overall true seroprevalence was 51.4%. 		Epidemiological study	
22)Khanal, D. R. (2021). Detection of Antibodies against Peste Des Petits Ruminants Virus in Nepal . EC Veterinary Science, 6, 53-58.	 552 sera samples from 524 goats, 16 chyangra (high mountain goats), and 12 sheep were tested using the ID SCREEN® PPR COMPETITION. Results: prevalence was 29.38% in goats and 37.7% in chyangra; none of the sera from sheep was positive. 		Epidemiological study	

23)Shyaka A. et al. (2021). Serological Evidence of Exposure to Peste des Petits Ruminants in Small Ruminants in Rwanda. Front. Vet. Sci. 8:651978.	 sera from 144 sheep and 316 goats were tested using the ID SCREEN® PPR COMPETITION. Results: 14.8% (68/460) samples from small ruminants, including 17.4% (25/144) from sheep and 13.6% (43/316) from goats were seropositive. 	Epidemiological study
24)Allahvirdizadeh R. et al. (2020). Seroprevalence study of peste des petits ruminants in sheeps of Shabestar, Iran. Iranian Journal of Virology 14(1): 21-27.		Epidemiological study
25)Bukar B.A. et al. (2020). The first Seroprevalence investigation of Peste des Petits ruminants virus among Sahel goat in Yobe state, Nigeria. Asian Journal of Medicine and Health, 18(4), 33-38.	 460 goat sera were tested using the ID SCREEN® PPR COMPETITION. Results: overall seroprevalence was 55.4%. 	Epidemiological study
26)Gelana M. et al. (2020). Seroepidemiology of Peste des Petits ruminants in sheep and goats in the selected district of Horu Guduru Zone, Western Ethiopia. Research in Veterinary Science, 132, 527-534.	 806 serum samples from 124 flocks comprised of 387 sheep and 419 goats were tested using the ID SCREEN® PPR COMPETITION. Results: flock-level overall seroprevalence of PPR was 27.42%. An overall animal-level seroprevalence of 5.71% was recorded with 6.98% seroprevalence in sheep and 4.53% in goats. 	Epidemiological study
27)Hosny W.A. et al. (2020). Field serological investigation for peste des petits ruminants, foot-and-mouth disease, and bluetongue diseases in illegally introduced animals in Egypt. Veterinary World, 13(8): 1661-1666.	 62 sheep sera were tested using the ID SCREEN® PPR COMPETITION. Results: 60 out of 62 samples (96.7%) were positive. 	Epidemiological study
28)Kabir A. et al. (2020). Serological detection and confirmation of PPR among sheep and goat kept under different production systems. Pakistan Journal of Zoology, 52(3), 1137.	 246 sera from sheep and goats were tested using the ID SCREEN® PPR COMPETITION. Results: 58.54% of samples were found seropositive for PPRV; more prevalent in sheep (61.82%) as compared to goats (55.88%). 	Epidemiological study
29)Mahmoud A.S. et al (2020). Sero-Prevalence Investigation of Peste Des Petits Ruminants (PPR) and Associated Risk Factors in Libya During 2015-2016. Medcina Intern 4: 143. Medcina Intern, 2(1), 193-195.	 555 sheep sera and 135 goat sera were tested using the ID SCREEN® PPR COMPETITION. Results: overall seroprevalence was estimated to be 41% among sheep and 39% among goats. 	Epidemiological study



	FFIC LLISA - LXC	 		
30)Regmi B. et al. (2020). Monitoring of Serological Status in Response to PPR Vaccination in the Goat Population of Parbat, Baglung and Myagdi District of Nepal. Nepalese Vet. J. 36: 157 –162.	 276 blood samples were collected from randomly selected goats; among them, 214 goats were vaccinated one month earlier against PPR whereas 62 goats were unvaccinated; sera were tested using the ID SCREEN® PPR COMPETITION. Results: seroprevalence was 75.2% in vaccinated goats and 25.8% in unvaccinated goats. 		Epidemiological study	
31)Rume V.N. et al. (2020). Sero- epidemiology of peste des petits ruminants in Oromia and Afar regional states of Ethiopia. Rev Sci Tech, 39(3), 863-870.	 800 serum samples from sheep and goats were tested using the ID SCREEN® PPR COMPETITION. Results: overall prevalence was 12.9%. 		Epidemiological study	
32)Burns R.J. et al. (2019). Peste des Petits Ruminants (PPR) virus serological surveillance in goats in Lao PDR: Issues for disease eradication in a low-resource disease-free setting. Transboundary and emerging diseases, 66(2), 939-947.	 1072 goat sera were tested using the ID SCREEN® PPR COMPETITION. Results: positive antibody responses were found in 2.2% of the samples. True prevalence calculations indicated a total overall sample prevalence of 1.7% 		Epidemiological study	
33)Mapaco L. et al. (2019). Peste des Petits Ruminants Virus Surveillance in Domestic Small, Ruminants, Mozambique (2015 and 2017). Front. Vet. Sci. 6:370.	 4995 serum samples from 4315 goats and 680 sheep were tested using the the ID SCREEN® PPR COMPETITION; positive samples obtained were retested with an haemagglutinin based PPR blocking ELISA (HPPR-bELISA); nasal swabs from all positive animals were tested for the presence of PPRV nucleic acid using RT-PCR. Results: overall prevalence was 0,46% with ID Screen® PPR Competition; positive sera tested then with the HPPR-bELISA; PPRV RNA was not detected in swabs submitted to molecular testing. These results are consistent with the specificity data of with ID Screen® PPR COMPETITION, leading to the conclusion of a negative PPR status. 		Epidemiological study	
34)Kgotlele T. et al. (2019). Detection of peste des petits ruminants and concurrent secondary diseases in sheep and goats in Ngorongoro district, Tanzania. Comparative Clinical Pathology, 28, 755-759.	 240 sera (from 59 sheep and 181 goats) were tested using the ID SCREEN® PPR COMPETITION. Results: overall seroprevalence was 74.6%. 		Epidemiological study	



35)Sakhare P. et al. (2019). Seroepidemiology of Peste Des Petits Ruminants (PPR) in Sheep and Goats of Southern Districts of Gujarat, India. Int.J.Curr.Microbiol.App.Sci. 8(11): 1552-1565.	 750 serum samples from sheep and goats were tested using the ID SCREEN® PPR COMPETITION Results: seroprevalence 62,4%. 	Epidemiological study
36)Acharya N. et al. (2018). Cross-sectional sero-prevalence study of Peste des Petits Ruminants (PPR) in goats of Syangja and Kaski districts of Nepal. Virus Disease, 29, 173-179.	 460 goat serum samples were tested using the ID SCREEN® PPR COMPETITION. Results: overall seropositivity of 82.60%. 	Epidemiological study
37)Dayhum A. et al. (2018). Seroprevalence and epidemiology of Peste des Petits Ruminants in Libya. Transbound Emerg Dis. 65: e48–e54.	 3508 serum samples from sheep and goats were tested using the ID SCREEN® PPR COMPETITION. Results: overall seroprevalence was 33%. 	Epidemiological study
38)Gebre T. et al. (2018). Seroprevalence and associated risk factors of Peste des Petits Ruminants (PPR) in sheep and goats in four districts of Bench Maji and Kafa Zones, South West Ethiopia. Global Veterinaria, 20(6), 260-270.	 968 serum samples from 96 sheep and goat flocks were tested using the ID SCREEN® PPR COMPETITION. Results: an overall apparent seroprevalence of 2.1% at individual animals and 18.8% at flock levels was recorded. 	Epidemiological study
39)Amelshay M. et al. (2017). An epidemological study on Peste des petits ruminants in Tripoli Region, Lybia. Veterinaria Italiana, 53 (3), 235-242.	 serum samples from 601 sheep and 120 goats were tested using the ID SCREEN® PPR COMPETITION. Results: overall seroprevalence was 46.7% (44.3% in sheep and 59.2% in goats). 	Epidemiological study
40)Mahmoud A.Z. et al. (2017) Outbreaks of PPR-FMD among sheep and goats in Hail, Saudi Arabia. Veterinary Sciences: Research and Reviews, 3(2): 38-44.	 serum samples from 38 goats, 124 sheep, and 8 camels collected during a PPR outbreak were tested using the ID SCREEN® PPR COMPETITION. Results: Screened sheep and goat sera were positive, and camels were seronegative. 	Epidemiological study
41)Torsson E. et al. (2017) Seroprevalence and risk factors for Peste des Petits Ruminants and selected differential diagnosis in sheep and goats in Tanzania. Infection ecology & epidemiology VOL. 7, 1368336.	 957 serum samples from sheep and goats were collected in 2014 and 2015 and tested using the ID SCREEN® PPR COMPETITION. Results: true prevalence was 49,3% in 2014 and 10% in 2015. 	Epidemiological study

42)Karim A. et al. (2016). Detection of Peste des petits ruminants virus and goatpox virus from an outbreak in goats with high mortality in Meghalaya state, India. Veterinary World, 9(9): 1025-1027.	 whole blood and sera from 7 goats (animals remaining in a flock with a heavy mortality resulting from a PPR outbreak) were tested using the ID SCREEN® PPR COMPETITION, ID screen® PPR Antigen Capture and RT-PCR (for detection of PPRV partial N gene). Results: The ELISA results showed the presence of antiPPRV nucleoprotein antibodies in all the sera samples (n=7) ranging from 9% to 41% positivity in competitive ELISA. The PPRV was also detected by sandwich ELISA with positivity ranging from 58% to 80%. From the whole blood, four samples were positive for the PPRV N gene by RT-PCR. 	Correlation with other techniques	Epidemiological study	
43)Undrakhbayar T. et al. (2016). Serosurveillance of "Peste des Petits Ruminants" PPR in Mongolia and development of recommendation. Mongolian Journal of Agricultural Sciences 19 (03): 22-26.	 1950 goat and sheep serum samples were tested using the ID SCREEN® PPR COMPETITION. Results: PPR virus antibodies have been found in 12 samples from 1550 sheep, and 4 samples from 400 goats. 		Epidemiological study	
44)Woma T. et al. (2016). Serosurvey of peste des petits ruminants virus in small ruminants from different agroecological zones of Nigeria. Onderstepoort Journal of Veterinary Research, 83(1), Art. #1035, 9 pages	 4548 serum samples from 3489 goats and 1059 sheep were tested using the ID SCREEN® PPR COMPETITION. Results: overall prevalence was 23.16%. 		Epidemiological study	
45)Kardjadj M. et al. (2015). Seroprevalence, distribution and risk factor for peste des petits ruminants (PPR) in Algeria. Preventive Veterinary Medicine, 122(1-2), 205-210.	 150 flocks randomly sampled were investigated and 4552 serum samples (from 3336 sheep and 1216 goats) were tested using the ID SCREEN® PPR COMPETITION. Results: overall true flock seroprevalence of 30.45%. 		Epidemiological study	
46)Kihu S. et al. (2015). Sero- epidemiology of Peste des Petits Ruminants virus infection in Turkana County, Kenya. BMC Veterinary Research,11:87.	 serum samples from 431 sheep and 538 goats were tested using the ID SCREEN® PPR COMPETITION. Results: seroprevalence was 40% in goats and32% in sheep. 		Epidemiological study	

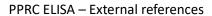
47)Sharma K.K. et al. (2015). Diagnosis of Peste des Petits Ruminants infection in small ruminants through in-house developed indirect ELISA. Practical considerations. Veterinary World,8(4): 443-448.	 comparison of an in-house indirect PPR ELISA (wells coated with PPR Ag vaccine) with the ID SCREEN® PPR COMPETITION and an AGID test on 24 small ruminant serum samples collected during a PPR outbreak. Results: the ID SCREEN® PPR COMPETITION detected all the samples, in-house ELISA detected 22/24 samples, and the AGID test detected no samples. 	Correlation with other techniques	Epidemiological study
48)El Arbi A. S. <i>et al.</i> (2014). Peste des Petits Ruminants Virus, Mauritania . Emerging Infectious Diseases. Vol. 20, N° 2.	 serum samples from 1190 sheep and 714 goats were tested using the ID SCREEN® PPR COMPETITION. Results: seroprevalence was 43%. 		Epidemiological study
49)Gurcay M. et al. (2013). Peste Des Petits Ruminants (PPR) Virus Infections in Goats in the Eastern Anatolia of Turkey. Kafkas Univ Vet Fak Derg 19 (Suppl-A): A93-A98.	 sera collected from 15 clinically ill kids were tested using the ID SCREEN® PPR COMPETITION. Results: PPRV antibodies were detected in all serum samples of clinically sick kids. 	Correlation with other techniques	Epidemiological study

LARGE RUMINANTS

50)Sendow I. et al. (2024). Seroprevalence of peste des petits ruminants disease in Indonesian buffaloes may be an emerging threat to small ruminants. Veterinary World, 17(3): 535–539.	 145 buffalo sera were tested using the ID SCREEN® PPR COMPETITION. Results: over all prevalence was 4.1%. 	Test of particular species	Epidemiological study
51)Siddiqui M.S. et al. (2023). Seroprevalence of Peste des Petits Ruminants in Small and Large Ruminants in Selected Bordered Areas of Bangladesh. Res. J. Microbiol., 18 (1): 57-62.	 200 serum samples from 80 goats and 120 cattle were tested using the ID SCREEN® PPR COMPETITION. Results: overall seroprevalence was 25% in cattle and 32.5% in goats. 		Epidemiological study
52)Chowdhury E.H. <i>et al.</i> (2022). Peste des petits ruminants virus antibodies in domestic large ruminants in Bangladesh . The Journal of Infection in Developing Countries, 16(02), 369-373.	 434 sera samples from sheep (n = 100), cattle (n = 190) and buffalo (n = 144) were tested using the ID SCREEN® PPR COMPETITION. Results: overall prevalence was 16% in sheep,3.68% in cattle, and 42.36% in buffaloes. 		Epidemiological study
53)Prajapati M. et al. (2021). Serological investigations of Peste des Petits Ruminants in cattle of Nepal. Vet Med Sci.; 7:122–126.	 225 cattle sera were tested using the ID SCREEN® PPR COMPETITION. Results: overall prevalence was 5.88%. 		Epidemiological study
54)Ali W.H. et al. (2019). Serological investigations of peste des petits ruminants among cattle in the Sudan. Tropical animal health and production, 51(3), 655-659.	 1000 cattle sera were tested using the ID SCREEN® PPR COMPETITION. Results: overall prevalence was 42%. 		Epidemiological study

SWINE

55)Schulz C. <i>et al.</i> (2018). Neglected Hosts of Small Ruminant Morbillivirus . Emerging Infectious Diseases Vol. 24, N° 12.	 PPRV transmission trials with lineage IV strain Kurdistan/2011 in suids (pigs and wild boars), sheep and goats; the ID SCREEN® PPR COMPETITION was used to follow progression of serologic parameters. Results: all animals seroconverted. 				Experimental study	
--	---	--	--	--	--------------------	--


CAMELIDS

56)Cosseddu G.M. et al. (2021). Serosurveillance of emerging viral diseases in camels and cattle in Nouakchott, Mauritania: an abattoir study. Tropical Animal Health and Production, 53, 1-6.	 159 camel sera and 118 cattle sera were tested using the ID SCREEN® PPR COMPETITION. Results: PPR antibodies were absent in camels and had 12% prevalence in cattle. Specificity in camels: 100% (95%IC: 97.7-100). 		Epidemiological study		Specificity data
57)Rahman H. et al. (2020). An investigation on the prevalence of peste des petits ruminants in the camels of Sindh, Pakistan. Tropical Animal Health and Production, 52, 1863-1867.	 200 camel sera were tested using the ID SCREEN® PPR COMPETITION. Results: overall prevalence was 8.5%. 		Epidemiological study		
58)Hemida M.G. et al. (2019). Evidence of Peste des petits Ruminants Virus in Dromedary Camels in the Kingdom of Saudi Arabia between 2014 and 2016. Veterinary Medicine International Article ID 4756404.	 370 dromedary camel sera were tested using the ID SCREEN® PPR COMPETITION. Results: seroprevalence was 2.97%. 		Epidemiological study	ı	
59)Schulz C. et al. (2019). Camelids and Cattle Are Dead-End Hosts for Peste des Petits-Ruminants Virus. Viruses, 11, 1133.	 The study investigated the role of cattle, South American camelids (SAC: Ilamas and alpacas) and dromedary camels in PPRV (lineage IV strain Kurdistan/2011) transmission trials; serum samples collected at regular intervals post infection were tested using the ID SCREEN® PPR COMPETITION. Results: In SAC, low antibody levels and a prolonged time until seroconversion (12 to 21 dpi) were detected. Of the six experimentally infected dromedaries, two young adult dromedaries seroconverted with low antibody levels between 20 dpi and 74 dpi. The last one young adult dromedary and the three older dromaderies inoculated showed no seroconversion. All inoculated cattle seroconverted at 10 dpi with moderate to high antibody level at 16dpi. 			Experimental study	

WILDLIFE

60)Haroun M. et al. (2021). Peste Des Petits Ruminants: A First Retrospective Investigation Among Susceptible Animal Species in Qatar. researchsquare.com.	 368 blood, swabs, and organ tissue samples frrom sheep, goats and wild ruminants were screened for PPR antibodies, antigens and nucleic acids using the ID SCREEN® PPR COMPETITION, the ID Screen®PPR Antigen Capture and RT-PCR, respectively. Results: including sheep and goats, 7 wild ruminant animal species (deer, gazelle, addax, Oryx, blackbuck, springbuck and waterbuck) were considered positive for PPR infection. seroprevalence was 56% (n=14). 	Correlation with other techniques	Epidemiological study	
61)Jones B.A. et al. (2021). Peste des Petits Ruminants Virus Infection at theWildlife-Livestock Interface in the Greater Serengeti Ecosystem. 2015–2019. Viruses 13, 838.	 sera from 132 wild artiodactyls were tested using the ID SCREEN® PPR COMPETITION. Results: 19.7% were seropositive from the following species: African buffalo, wildebeest, topi, kongoni, Grant's gazelle, impala, Thomson's gazelle, warthog and gerenuk, while waterbuck and lesser kudu were seronegative. 		Epidemiological study	
62)Aguilar X.F. et al. (2020). Peste des Petits Ruminants at the Wildlife– Livestock Interface in the Northern Albertine Rift and Nile Basin, East Africa. Viruses 2020, 12, 293.	 epidemiological study in wildlife and livestock using the ID SCREEN® PPR COMPETITION. Results: similar patterns of PPRV exposure in wildlife and livestock. Antibodies detected in buffaloes (n=11, prevalence 19%), Uganda kobe (n=4, prevalence 10.3%), elephant (n=1, prevalence 2.5%), and tiang (n=15, prevalence 71.4%). 		Epidemiological study	
63)Abubakar M. et al. (2019). Detection of antibodies to peste-des-petits-ruminants virus in the semi-domesticated yak. European Journal of Wildlife Research 65: 88.	 serum samples of healthy yaks (250 from Pakistan and 85 from Tajikistan) were tested using the ID SCREEN® PPR COMPETITION. Results: none of the Tajik yaks were seropositive while 23 of 250 (9.2%) yaks sampled in Pakistan were found positive. 		Epidemiological study	
64)Asil R. et al. (2019). First detection and genetic characterization of peste des petits ruminants virus from dorcas gazelles "Gazella dorcas" in the Sudan,2016-2017. Archives of Virology.	 Detection and characterization of PPRV from Dorcas gazelles. Isolation in culture, RT-PCR, and the ID Screen®PPR Antigen Capture were used to demonstrate the presence of the virus. Sera were screened for the presence of PPRV antibodies using the ID Screen® PPR COMPETITION. Results: PPRV antibodies could not be detected in the sera of two healthy captive gazelles, but could be 	Correlation with other techniques	Epidemiological study	

	detected in all four sera collected from gazelles with clinical signs of PPR.				
65)Berkowit A. et al. (2019). Pathological and molecular characterisation of peste des petits ruminants in Nubian ibex (Capra nubiana) in Israel. Archives of Virology 164:1997–2003.	 Description of a PPR outbreak in a zoo herd of Nubian ibex (n=32). Five animals that survived the outbreak were tested using the ID Screen® PPR COMPETITION. Results: all the animals were seropositive. 		Epidemiological study		
66)Markus T.P. et al. (2019). Assessment of Peste des petits ruminants antibodies in vaccinated pregnant Kano brown does from Nigeria and subsequent maternal immunity in their kids. Small ruminant research 174, 53-56.	 Vaccination study followed using the ID Screen® PPR COMPETITION to assess PPR antibodies in vaccinated pregnant Kano brown does and subsequent maternal immunity in their kids post parturition. Results: 100% of vaccinated does had and maintained protective PPR antibodies post-vaccination; vaccination of pregnant does against PPR provided protective maternal immunity in their kids. 			Experimental study	
67)Bodisaikhan K. (2017). Peste des Petits Ruminants (ppr) in saiga antelope in mongolia. OIE communication Bali, Indonesia. 2017.07.04-06.	 During the PPRV outbreak in Saiga antelopes, in 2016 in Mongolia, the ID Screen® PPR COMPETITION and the ID Screen® PPR ANTIGEN CAPTURE were used to diagnose PPR Results: the ID Screen® PPR COMPETITION and the ID Screen® PPR ANTIGEN CAPTURE detected for the first time PPR antibodies and PPR antigen in Saiga antelopes, respectively; virus presence was confirmed by RT-PCR. 	Correlation with other techniques	Epidemiological study		
68)Orynbayev M. et al. (2016). Seroprevalence of infectious diseases in saiga antelope (Saiga tatarica tatarica) in Kazakhstan 2012-2014. Preventive Veterinary Medicine, S0167-5877(16)30101-5.	 286 sera from Saiga antelopes were tested using the ID Screen® PPR COMPETITION. Results: overall seroprevalence was 0.6%. 		Epidemiological study		

Doc1373 Ver0714